Multifunctional nanoarchitectures from DNA-based ABC monomers.
نویسندگان
چکیده
The ability to attach different functional moieties to a molecular building block could lead to applications in nanoelectronics, nanophotonics, intelligent sensing and drug delivery. The building unit needs to be both multivalent and anisotropic, and although many anisotropic building blocks have been created, these have not been universally applicable. Recently, DNA has been used to generate various nanostructures or hybrid systems, and as a generic building block for various applications. Here, we report the creation of anisotropic, branched and crosslinkable building blocks (ABC monomers) from which multifunctional nanoarchitectures have been assembled. In particular, we demonstrate a target-driven polymerization process in which polymers are generated only in the presence of a specific DNA molecule, leading to highly sensitive pathogen detection. Using this monomer system, we have also designed a biocompatible nanovector that delivers both drugs and tracers simultaneously. Our approach provides a general yet versatile route towards the creation of a range of multifunctional nanoarchitectures.
منابع مشابه
Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications
Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. I...
متن کاملTetramerization and ATP binding by a protein comprising the A, B, and C domains of rat synapsin I.
Synapsins are multidomain proteins that are critical for regulating neurotransmitter release in vertebrates. In the present study, two crystal structures of the C domain of rat synapsin I (rSynI-C) in complex with Ca(2+) and ATP reveal that this protein can form a tetramer and that a flexible loop (the "multifunctional loop") contacts bound ATP. Further experiments were carried out on a protein...
متن کاملDNA tile based self-assembly: building complex nanoarchitectures.
DNA tile based self-assembly provides an attractive route to create nanoarchitectures of programmable patterns. It also offers excellent scaffolds for directed self-assembly of nanometer-scale materials, ranging from nanoparticles to proteins, with potential applications in constructing nanoelectronic/nanophotonic devices and protein/ligand nanoarrays. This Review first summarizes the currently...
متن کاملPseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology
The structural reorganization of nanoscale DNA architectures is a fundamental aspect in dynamic DNA nanotechnology. Commonly, DNA nanoarchitectures are reorganized by means of toehold-expanded DNA sequences in a strand exchange process. Here we describe an unprecedented, toehold-free switching process that relies on pseudo-complementary peptide nucleic acid (pcPNA) by using a mechanism that inv...
متن کاملInsights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase
The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237-780) in complex with different ssDNAs. Our results have revealed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature nanotechnology
دوره 4 7 شماره
صفحات -
تاریخ انتشار 2009